989 research outputs found

    A framework for understanding the factors influencing pair programming success

    Get PDF
    Pair programming is one of the more controversial aspects of several Agile system development methods, in particular eXtreme Programming (XP). Various studies have assessed factors that either drive the success or suggest advantages (and disadvantages) of pair programming. In this exploratory study the literature on pair programming is examined and factors distilled. These factors are then compared and contrasted with those discovered in our recent Delphi study of pair programming. Gallis et al. (2003) have proposed an initial framework aimed at providing a comprehensive identification of the major factors impacting team programming situations including pair programming. However, this study demonstrates that the framework should be extended to include an additional category of factors that relate to organizational matters. These factors will be further refined, and used to develop and empirically evaluate a conceptual model of pair programming (success)

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    A reconfigurations analogue of Brooks’ theorem.

    Get PDF
    Let G be a simple undirected graph on n vertices with maximum degree Δ. Brooks’ Theorem states that G has a Δ-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring of G can be obtained by a sequence of O(n 2) recolourings using only the original k colours unless G is a complete graph or a cycle with an odd number of vertices, or k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two neighbours of v are coloured alike. We use this result to study the reconfiguration graph R k (G) of the k-colourings of G. The vertex set of R k (G) is the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. It is known that if k ≤ Δ(G), then R k (G) might not be connected and it is possible that its connected components have superpolynomial diameter, if k ≥ Δ(G) + 2, then R k (G) is connected and has diameter O(n 2). We complete this structural classification by settling the missing case: if k = Δ(G) + 1, then R k (G) consists of isolated vertices and at most one further component which has diameter O(n 2). We also describe completely the computational complexity classification of the problem of deciding whether two k-colourings of a graph G of maximum degree Δ belong to the same component of R k (G) by settling the case k = Δ(G) + 1. The problem is O(n 2) time solvable for k = 3, PSPACE-complete for 4 ≤ k ≤ Δ(G), O(n) time solvable for k = Δ(G) + 1, O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes)

    Optical Alignment System for the PHENIX Muon Tracking Chambers

    Full text link
    A micron-precision optical alignment system (OASys) for the PHENIX muon tracking chambers is developed. To ensure the required mass resolution of vector meson detection, the relative alignment between three tracking station chambers must be monitored with a precision of 25μ\mum. The OASys is a straightness monitoring system comprised of a light source, lens and CCD camera, used for determining the initial placement as well as for monitoring the time dependent movement of the chambers on a micron scale.Comment: Accepted for the publication in Nucl.Instr.Meth.

    Effectiveness of the global protected area network in representing species diversity

    Get PDF
    The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets

    Novel Phases in the Field Induced Spin Density Wave State in (TMTSF)_2PF_6

    Get PDF
    Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.Comment: LaTex, 4 pages, 4 figure

    An extreme value theory approach to calculating minimum capital risk requirements

    Get PDF
    This paper investigates the frequency of extreme events for three LIFFE futures contracts for the calculation of minimum capital risk requirements (MCRRs). We propose a semiparametric approach where the tails are modelled by the Generalized Pareto Distribution and smaller risks are captured by the empirical distribution function. We compare the capital requirements form this approach with those calculated from the unconditional density and from a conditional density - a GARCH(1,1) model. Our primary finding is that both in-sample and for a hold-out sample, our extreme value approach yields superior results than either of the other two models which do not explicitly model the tails of the return distribution. Since the use of these internal models will be permitted under the EC-CAD II, they could be widely adopted in the near future for determining capital adequacies. Hence, close scrutiny of competing models is required to avoid a potentially costly misallocation capital resources while at the same time ensuring the safety of the financial system

    Identification of novel miRNAs involved in cardiac repair following infarction in fetal and adolescent sheep hearts

    Get PDF
    Aims:Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods:We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results:73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion:There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.Mitchell C. Lock, Ross L. Tellam, Jack R. T. Darby, Jia Yin Soo, Doug A. Brooks, Mike Seed ... et al

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ϵ(q)\epsilon(\vec{q}) has a current-induced contribution proportional to qJ\vec{q}\cdot \vec{\cal J}, where J\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j109Acm2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    The Complexity of the Empire Colouring Problem

    Get PDF
    We investigate the computational complexity of the empire colouring problem (as defined by Percy Heawood in 1890) for maps containing empires formed by exactly r>1r > 1 countries each. We prove that the problem can be solved in polynomial time using ss colours on maps whose underlying adjacency graph has no induced subgraph of average degree larger than s/rs/r. However, if s3s \geq 3, the problem is NP-hard even if the graph is a forest of paths of arbitrary lengths (for any r2r \geq 2, provided s<2r(2r+1/4+3/2)s < 2r - \sqrt(2r + 1/4+ 3/2). Furthermore we obtain a complete characterization of the problem's complexity for the case when the input graph is a tree, whereas our result for arbitrary planar graphs fall just short of a similar dichotomy. Specifically, we prove that the empire colouring problem is NP-hard for trees, for any r2r \geq 2, if 3s2r13 \leq s \leq 2r-1 (and polynomial time solvable otherwise). For arbitrary planar graphs we prove NP-hardness if s<7s<7 for r=2r=2, and s<6r3s < 6r-3, for r3r \geq 3. The result for planar graphs also proves the NP-hardness of colouring with less than 7 colours graphs of thickness two and less than 6r36r-3 colours graphs of thickness r3r \geq 3.Comment: 23 pages, 12 figure
    corecore